Influence of irrigation recharge on groundwater nitrate-N on the Greenfields Bench, MT

Christian G. Schmidt
Hydrologist
Montana Department of Agriculture
Ground Water Protection Program

Greenfields Bench

- Greenfields Irrigation District supplies water to ~83,000 acres
- District fed by 3 reservoirs
 - Gibson Reservoir 99,100 ac. ft. storage
 - Pishkun Reservoir 46,700 ac. ft. storage
 - Willow Creek Reservoir 32,400 ac. ft. storage
- 295 miles of canals and laterals
- Known for production of malt barley

Hydrogeology

- Topographically isolated bench of Cretaceous age
- Overlain by quaternary gravel deposits (1 to 12 m thick)
- Benches formed by down cutting and terrace gravel deposition of the Sun River (pre- and early Wisconsin Eras)
- Somewhat excessively drained clay loam soils (~ 20 cm thick) overlay poorly sorted sand and gravels in a clay matrix (Miller, 2005)
- Shallow aquifer recharged by irrigation/precipitation direct hydraulic connection
 - 70% of recharge from irrigation, canal leakage, and ponded tailwater (Osborne et al., 1983)
 - During irrigation season (May-July) groundwater levels may rise to the ground surface

Data

- 10 groundwater wells with minimum of 5 years collection (mean=8.8 years) between 1998-2008 (*n*=171)
 - Growing season data (April September)
- Climate data from Greenfields weather station (COOP ID: 242857)
- Comparison with dataset of earlier nitrate-N study on the Bench (n=261) (Walther, 1981)

Dataset comparison

Table 1. Well characteristics of all wells on the Greenfields Bench and for two datasets

Well	Greenfields	MDA	Walther
characteristics	Bench	1998-2008	1981
Count	679	10	18
Minimum (ft.)	0.0	14.8	14.0
Maximum (ft.)	285.0	63.0	120.0
Mean (ft.)	28.0	29.1	26.5
Median (ft.)	22.0	25.0	20.0
Std. deviation (ft.)	28.0	14.2	24.1
Con. Level (95%)	2.1	10.2	11.9

- Population means not significantly different ($\alpha = 0.05$) among three datasets for total well depth
- MDA and Walther datasets representative of GWIC database for the Bench

MDA 1998-2008

MDA 1998-2008

MDA 1998-2008

Walther, 1981

Dataset comparison

- Mean nitrate-N concentrations were not significantly different ($\alpha = 0.05$) between MDA and Walther, 1981 datasets (P-value = 0.107)
- Median nitrate-N concentration greater over 1998-2008 versus 1980 field season
- Significant correlation between nitrate-N
 concentrations and static water level not observed in
 either study
 - 1998-2008; P-value = 0.073; PCC = -0.168
 - Shallow groundwater, greater likelihood of elevated nitrate concentrations

Dataset comparison

Irrigation Recharge Rate

- 1980 90% flood irrigation, 10% sprinkler (Walther, 1981)
- 2002 55-60% flood irrigation, 40-45% sprinkler (wheel-line; center pivot) (Miller et al., 2002)
 - Sprinkler-use increasing in grains vs. alfalfa/hay
- Irrigation efficiency study (Miller, 2005)
 - Wheel-line: 9 cm of recharge (70% < flood)
 - Center pivot: 3 cm of recharge (90% < flood)

Regression analysis

Regression analysis

Greenfields vs. Judith River Basin

- Hydrogeology of both areas is very similar
 - Aquifer storage
 - Hydraulic conductivity (under natural conditions)
 - Soil texture, depth and genesis
- Agriculture
 - Greenfields Bench—irrigated small grains (>>barley)
 - Judith River Basin dryland small grains (>>wheat)

Greenfields vs. Judith River Basin

- Judith Basin
 - 199 detections of 33 pesticide analytes in groundwater in 2009
 - Rural wells completed in terrace gravels had a median nitrate-N concentration of 19.50 mg/L and mean of 5.46 detects/ sample ($\sigma = 2.08$) (n=17 sites)
 - Greenfields Bench: median 5.0 mg/L and 8.83 detects/ sample ($\sigma = 2.68$) (n=10 sites)
- Dryland cropping systems exhibit lower herbicide loading but higher nitrate concentrations

δ 15N and δ 18O isotopes

- Greenfields Bench (1998)
 - N predominantly nitrate and ammonium fertilizer; possibly SON (*n*=16)
- Judith River Basin (2009)
 - N is SON; some mixed signatures with manure/ septic effluent (*n*=12)

Unintended consequences

- Increases in irrigation efficiency may lead to a...
 - Decrease in water quality
 - Decrease in storage
 - Shrinking of wetland and riparian habitat extent where induced recharge from irrigation feeds these systems
- Where is the 'break-even' point?
 - Point where efficiency gains result in impaired groundwater quality and/or reduced wetland/riparian habitat?

Bibliography

- Miller, K.J., D.S. Rise, and C. McDonald. 2002. Ground-water and surface-water quality, herbicide transport, and irrigation practices: Greenfields Bench Aquifer, Teton County, Montana. MBMG Open-File Report 463.
- Miller, K.J. 2005. Irrigation methods and transport of imazamethabenz-methyl to ground water: Greenfields Bench, Montana. Journal of American Water Resources Association. Paper no. 04014. pp. 257-265
- Osborne, T.J., Noble, R.A., Zaluski, M.H., and F.A. Schmidt. 1983. Evaluation of the ground-water contribution to Muddy Creek from the Greenfields Irrigation District: Montana Bureau of Mines and Geology Open-File Report 113, 141 p.
- Walther, K.C. 1981. Nitrates in wells of the Greenfield Irrigation District Fairfield, Montana. Water Quality Bureau Department of Health and Environmental Sciences. WQB Report No. 81-1. 24 p.

Questions?

Christian G. Schmidt
Hydrologist
Montana Department of Agriculture
cschmidt2@mt.gov
(406) 444-3271